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ABSTRACT

In experiments going back to the first free electron laser (FEL) oscillator at Stanford, the
measured width of the desynchronism curve is often significantly greater than predicted by
theory and two-dimensional (2D) simulations in (z, t). The results of new four-dimensional
(4D) simulations in (x,y,z, t) show that this difference can be explained by the effects of
diffraction. When the light is artificially constrained to remain in the cavity fundamen-
tal mode, 2D and 4D simulations give similar results, but when the light is allowed to
self-consistently develop higher-order modes, the 4D simulations give different results that
agree better with experiments. The results of new 4D simulations also show the effects
of emittance versus electron beam energy and mirror shift versus mirror tilt on extraction.
Analysis of these results examine the robustness of FEL designs.
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CHAPTER 1:
Introduction

1.1 A Brief History
The first free electron laser (FEL) was built at Stanford University and lased in 1976 [1].
This FEL was initially proposed by Madey [2] in 1971 and was based on initial theory
and experiments by Motz [3], [4]. Stanford then went on to build and operate the first
oscillator FEL in 1977 [5]. Since 1976, FELs have been established across the world [6]–
[8] with varying wavelengths and power levels. The most powerful FEL was operated
at Jefferson Lab in 2001 [9] with an average power of 14kW as part of a United States
Navy (USN) program to design and build a MW class FEL for ship defense. The National
Academy of Sciences [10] created a report in 2009 detailing the issues involved in the
design of a MW class FEL. The Office of Naval Research (ONR) funded an Innovative
Naval Prototype (INP) in 2010 with the goal of designing a prototype for a 100kW FEL.
Boeing was selected for this project; however, it was canceled in 2012 as the Navy decided
to focus on solid state lasers (SSL) for their near term deployment capabilities.

For Naval applications, directed energy (DE) weapons represent an opportunity to gain
a significant advantage in both offensive and defensive capabilities. A SSL has already
been deployed on a surface combatant; however, SSLs are limited in power and to a spe-
cific wavelength. Previous research at Naval Postgraduate School (NPS) [11] has shown
that there are wavelengths outside of the typical SSL operation that enhance propagation
through the atmosphere in certain maritime environments. FELs are capable of lasing at
these wavelengths with better beam quality and at potentially higher powers that provide
better utility in their application. Continuing research regarding FELs is critical for the
USN to maintain an advantage in DE weapons.

1.2 Overview of Thesis Research
The DE group at NPS has been developing FEL modeling programs for decades. Recently,
it developed a four-dimensional model that follows the evolution of the electron and opti-
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cal pulses in the transverse and longitudinal directions. Previous models have been used to
simulate FELs, but some discrepancies with comparisons to theoretical and experimental
results existed. This thesis work looks at these discrepancies using the new model for the
original Stanford FEL and the Jefferson Laboratory 14kW FEL. Research into the design
of high power FELs has also been conducted by the DE group, but this was using previ-
ous, less sophisticated models. This thesis expands this work by using the new model to
determine the robustness of FEL designs.

1.3 Outline
Chapter 2 derives the equations that constitute the base of FEL theory as well as discusses
in detail the concepts of pulse lethargy and desynchronism [12], [13]. Chapter 3 discusses
the codes used to model FELs and the output from the simulations. Chapter 4 establishes
the design parameters of a high power FEL. Chapter 5 lays out the results of the simulations
and Chapter 6 discusses the results. Chapter 7 provides a summary of the work as well as
a discussion regarding future research.
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CHAPTER 2:
Theory of Free Electron Lasers

2.1 Component Description of an Energy-Recovery Linac
Free Electron Laser

The components of an energy-recovery linear accelerator (linac) FEL can be seen in Figure
2.1. The first component of an energy-recovery linac FEL is the electron injector. The
injector can produce the electrons by different methods (e.g., by a thermionic process or
by photoemission). These electrons are produced in a pulse structure with a typical bunch
charge (qb) of 0.1 nC and duration (tb) of 1 ps. A typical value of the electrons’ kinetic
energy after the injector is 5 MeV. The electrons are then directed into the linac, which
often consists of radio frequency (RF) powered accelerators. For such accelerators, an RF
signal is applied to the accelerator cavities to generate an alternating electric field inside
them. The alternating electric field continually accelerates the electrons throughout the
cavities as the electrons “surf” the RF wave. The electrons in the RF linac are accelerated
to a typical energy of 100 MeV.

Figure 2.1: Diagram of the components of an Energy Recovery Linac FEL
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The electrons are transported between each component via an electron beam line. This line
is an evacuated pipe that has a radius of ∼ 1 cm and is surrounded by various magnets
and detectors. Solenoid and quadrupole magnets are used to focus the beam so that the
electrons stay collimated. Dipole magnets are also used to steer the beam at various places.

The next component is the undulator. It is comprised of permanent magnets or electromag-
nets (with peak magnetic fields of approximately 1 T ) arranged in such a way to produce an
alternating magnetic field. As the electrons move through the undulator, they wiggle back
and forth due to the Lorentz force and emit photons. These photons are often stored in an
optical cavity consisting of two mirrors: a highly reflecting (∼ 100 % reflective) mirror and
a partially transparent (∼ 1− 10 % transparent) mirror. The reflected optical pulse inside
the cavity arrives at the undulator at approximately the same time as an electron pulse. The
electron pulse then amplifies the optical pulse through the production of additional photons.
This process continues over many passes until the gain from the electron pulse equal the
losses (due to the partially transparent mirror), which is referred to as saturation. The laser
output power depends on the saturated power inside the cavity and the mirror transmission.

The electrons are then recirculated back to the RF linac using dipole magnets. The electrons
are now injected 180◦ out of phase with the RF fields that causes the electrons to decelerate
back to near their original injection energy of ∼ 5 MeV. This takes energy away from the
electrons and transfers it to the RF field (energy recovery). Once the electrons exit the RF
linac, they are directed to a beam dump where they impact shielded, conducting material.
This method of recycling the electrons greatly enhances the overall “wall plug” efficiency
and reduces the generated radiation at the beam dump.

2.2 FEL Resonance Condition
Resonance refers to the condition in which optimum energy exchange occurs. Specifically,
Colson [14] describes this as the case where as an electron passes through one undulator
period, one wavelength of light passes over it, which is important so that the electron sees
the correct electric field as it traverses the undulator. As the electron moves through the
undulator, there are two speeds that must be considered: the speed c of the photon and the
speed βzc of the electron with
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βz =
vz

c
≈ 1− (1+K2)

2γ2 , (2.1)

where K = eB̄λ0/2πmc2 is the undulator parameter, γ = 1/
√

1− (v2/c2), e is the charge of
the electron, B̄ is the root mean square field strength over each period, λ0 is the undulator
period, and m is the mass of the electron. The approximation made above will be explained
in the next section. The time for an electron to travel one undulator period is ∆t = λ0/βzc.
In that time, the photon will move ahead of the electron by a distance of (c−βzc)∆t, which
we equate to the optical wavelength as a condition for resonance where

λ = (c−βzc)∆t =
(1−βz)λ0

βz
. (2.2)

Placing (2.1) into (2.2) gives the approximate wavelength the FEL will lase at:

λ ≈ λ0(1+K2)

2γ2 . (2.3)

Equation (2.3) shows one of the advantages of an FEL over a solid state laser since the
FEL wavelength is tunable by manipulation of either K or γ . The wavelength can also be
manipulated by adjusting λ0, however this is usually not done as it is easier to manipulate
the magnetic field strength or the electron’s energy coming out of the accelerator.

2.3 The Pendulum Equation
An electron traveling though a helical undulator along the z-axis is subjected to a magnetic
field described as:

~B = B(cos(k0z),sin(k0z),0),

where B is the magnetic field amplitude and k0 = 2π/λ0 is the undulator wavenumber. The
magnetic and electric fields of the laser are given by

5



~B = E(sin(Ψ),cos(Ψ),0), (2.4)

~E = E(cos(Ψ),−sin(Ψ),0), (2.5)

where E is the electric field amplitude (in cgs units), Ψ = kz−ωt +φ is the optical phase,
k = 2π/λ is the wavenumber, λ is the optical wavelength, and ω is the optical frequency.
The relativistic Lorentz force equations are

d(γ~β )
dt

=− e
mc

(~E +~β ×~B), (2.6)

dγ

dt
=− e

mc
~β ·~E, (2.7)

γ
−2 = 1−~β 2, (2.8)

where~v = ~βc is the electron velocity.

The motion of the electron is determined by the combination of the undulator and laser
fields. Placing (2.4) and (2.5) into (2.6) gives:

d(γ~β⊥)
dt

=− e
mc

[E(1−βz)(cos(Ψ),−sin(Ψ))+βzB(−sin(k0z),cos(k0z))], (2.9)

d(γβz)

dt
=− e

mc
[E(βx cos(Ψ)−βy sin(Ψ))+B(βx sin(k0z)−βy cos(k0z))], (2.10)

where ~β⊥c is the transverse velocity of the electron. Since the electrons are relativistic,
βz ≈ 1, which means (2.9) can be simplified then integrated to

6



~β⊥ =−K
γ
(cos(k0z),sin(k0z),0), (2.11)

where we assume that the electron is injected into its orbits such that the constants of
integration are zero.

To determine the electron’s energy exchange with the optical field, we place (2.11) into
(2.7) to get

γ̇ =
dγ

dt
=− e

mc
E[βx cos(Ψ)−βy sin(Ψ)] =

eKE
γmc

cos(ζ +φ), (2.12)

where the electron phase is ζ ≡ (k+ k0)z−ωt. The variables k0, k, and ω are constant
which implies that ζ describes the electron’s position on the scale of an optical wavelength
since ζ ∝ kz(t). When cos(ζ + φ) > 0, the electron energy increases and γ̇ > 0; but if
cos(ζ + φ) < 0, the electron energy decreases and γ̇ < 0 (the desired state as it leads to
optical gain). Sufficient energy exchange between the electron and laser beam requires
that cos(ζ +φ) not oscillate quickly over time L/cβz, where L = Nλ0 is the length of the
undulator and N is the number of undulator periods.

Now, we can define the electron phase velocity as

ν =
ζ̇ L
c

= L[(k+ k0)βz− k] = ζ̊ ,

where ˚(...) = d(...)
dτ

indicates a derivative taken with respect to dimensionless time τ = ct/L.
The parameter τ goes from 0 to 1 as the electron traverses the undulator.

Notice that if ν = 0, βz = kc/(k+k0), which is equivalent to the resonance condition (2.2).
Thus ν = 0 corresponds to resonance, where the energy exchange between electrons and
light is maximized. Substituting (2.11) into (2.8) gives

7



βz =

(
1− 1+K2

γ2

) 1
2

.

Using the relativistic limit where γ � 1, this can be expanded as

βz ≈ 1− 1+K2

2γ2 .

Throughout the electron beam, the initial electron phase, ζ (0) = ζ0 = (k + k0)z0 ≈ kz0,
depends on the initial electron position z0 and is therefore different for each electron. An
inspection of (2.12) shows that approximately half of the electrons give energy to the laser
beam and the other half take energy from the laser beam. This phenomenon, with half the
electrons moving faster and the other half moving slower, causes the electrons to bunch and
radiate coherently due to the fact that it occurs on the scale of λ .

If we consider ν̇ = L[(k+ k0)β̇z] where βz ≈ 1− (1+K2)/2γ2, and using the resonance
condition (2.3) with the assumption γ � 1, then we find that

ν̊ =
4πNγ̇

γ
. (2.13)

Placing (2.12) into (2.13) gives

ν̊ = ˚̊ζ = |a|cos(ζ +φ), (2.14)

where |a| = 4πNeKLE/γ2mc2 is the dimensionless laser field amplitude. Equation (2.14)
has the form of the classical pendulum equation and describes how the electrons evolve
in phase space (ζ ,ν). An inspection of (2.14) shows that when |a| � π the fields of the
laser are strong, which causes the electrons to bunch together; however, if |a| � π then the
fields of the laser are weak and do not cause significant bunching. The electrons follow
FEL phase space paths described by

8



ν
2 = ν

2
0 +2|a|[sin(ζ +φ)− sin(ζ0 +φ)],

where ζ0 and ν0 are the initial coordinates of the electron in phase space. Figure 2.2 shows
an example of electron evolution in phase space through an undulator. Here, you can see
the electrons are introduced at the beginning of the undulator with an initial ν . As the
electrons progress through the undulator, they begin to evolve in phase space. At the end
of the undulator, you can see that the electrons have evolved significantly from their initial
ν values and are now bunched on the scale of an optical wavelength.

Figure 2.2: Evolution of electrons through the undulator in phase space.

2.4 The Wave Equation
Maxwell’s wave equation is

(
~∇2− 1

c2
∂ 2

∂ t2

)
~A(~x, t) =−4π

c
~J⊥(~x, t), (2.15)

where ~A(~x, t) is the optical vector potential and J⊥ is the perpendicular component of a
current source. The electric and magnetic fields are determined using

9



~E =−1
c

∂~A
∂ t

,

~B = ~∇×~A.

For a laser, we can assume the electric field envelope is slowly varying with distance on
the scale of an optical wavelength, λ = 2π/k, and in time when compared to the optical
period, 2π/ω = λ/c [14]. Therefore, this motivates us to write the optical vector potential
as

~A(~x, t) =
E(~x, t)

k
ε̂eiα ,

where α = kz−ωt is the phase of the carrier wave, E = |E|eiφ is the complex laser field
envelope, and ε̂ is the polarization vector. Both the amplitude, |E(~x, t)|, and the phase,
φ(~x, t) of the wave envelope are slowly varying, therefore we can rewrite (14) as

ε̂eiα

k

[
~∇2
⊥+2ik

(
∂

∂ z
+

1
c

∂

∂ t

)]
E =−4π

c
~J⊥, (2.16)

where ∇2
⊥ = ∂ 2

x +∂ 2
y .

Using the process of method of characteristics, a coordinate substitution can be made such
that

E(z, t) = E ′(u, t),

where u = z− ct. Now, we can write

∂E
∂ z

=
∂E ′

∂u
∂u
∂ z

=
∂E ′

∂u
, (2.17)

10



since ∂u/∂ z = 1. Likewise,

∂E
∂ t

=
∂E ′

∂u
∂u
∂ t

+
∂E ′

∂ t
= (−c)

∂E ′

u
+

∂E ′

∂ t
. (2.18)

Using (2.17) and (2.18), we can write

∂E
∂ z

+
1
c

∂E
∂ t

=
1
c

∂E ′

∂ t
.

Multiplying both sides of (2.16) by ke−iα ε̂∗, using the coordinate substitution, and drop-
ping the prime notation now gives the paraxial wave equation

[
~∇2
⊥+2ik

(
1
c

∂

∂ t

)]
E =−4πk

c
~J⊥ · ε̂∗e−iα . (2.19)

The source current can be written as

~J⊥ =−ec∑
i

~β⊥δ
(3)(~x−~ri(t)), (2.20)

where~ri(t) is the ith electron position at time t. The contribution to the transverse current,
from the transverse motion as described in (2.11), is

~β⊥ =−K
γ
(cos(k0z),sin(k0z),0) = Re

(
−K

γ
iε̂e−ik0z

)
, (2.21)

where ε̂ = 1√
2
(−i,1,0) for circular polarization from a helical undulator. Substituting

(2.21) into (2.20) and then (2.20) into (2.19) gives

[
~∇2
⊥+

2ik
c

∂

∂ t

]
E =−4πieKkρ(~x, t)

〈
e−iζ

γ

〉
, (2.22)
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where ρ(~x, t) is the local electron density and 〈e−iζ/γ〉 represents an average over sample
electrons in a volume element dV that is significantly smaller than either the optical or
electron pulse, and

∫
∑

i
δ
(3)(~x−~ri(t))dV = ρ(~x, t)dV

represents the number of electrons in the volume element.

Here, again, we will use the dimensionless time parameter τ = ct/L to rewrite (2.22) as

[
~∇2
⊥+

2ik
L

∂

∂τ

]
E =−4πieKkρ(~x,τ)

〈
e−iζ

γ

〉
. (2.23)

Multiplying (2.23) by −4πNeKL2/γ2
0 mc2k now gives the wave equation as

[
iL
2k
~∇2
⊥+

∂

∂τ

]
a(~x,τ) =− j〈e−iζ 〉,

where a = |a|eiφ = 4πNeKLE/γ2
0 mc2 represents the dimensionless laser field amplitude

and the dimensionless FEL current is represented by j = 8π2Ne2K2L2ρ/γ3
0 mc2 using the

assumption that γ ≈ γ0. Defining x̃ = x(k/2L)1/2 and ỹ= y(k/2L)1/2 allows us to now write
the wave equation in completely dimensionless form as

[
− i

4
~∇2
⊥+

∂

∂τ

]
a(~x,τ) =− j〈e−iζ 〉,

where for simplicity the tildes are dropped and the coordinates (x,y,z,τ) are dimensionless.

The first term in the above equation describes diffraction of the optical field. If we consider
the case where the electron and optical beams exactly overlap and the effect of diffraction
is small, the wave equation can then be simplified as
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å =− j〈e−iζ 〉, (2.24)

where the coupling between the laser and electron beam is determined by j and the electron
bunching by 〈e−iζ 〉. For small amounts of bunching, the coupling is small. When the value
of j . π , the coupling is small but when j� π , the coupling can be large.

Using the fact that a = |a|eiφ , the left side of (2.24) becomes

å = ˚|a|eiφ + |a|φ̊ ieiφ . (2.25)

Now, placing (2.25) into (2.24) and grouping real and imaginary terms gives

˚|a|=− j〈cos(ζ +φ)〉, (2.26)

φ̊ =
j〈sin(ζ +φ)〉

|a|
. (2.27)

Whether the coupling drives the optical field amplitude |a| or phase φ depends on the
relative values of ζ and φ , as can be seen in (2.26) and (2.27). When electrons bunch,
such that ζ +φ → π , the value of (2.26) increases. This increase in the dimensionless laser
field amplitude in turn causes the electrons to bunch even more via the coupling described
in (2.14). As more bunching occurs, this causes ζ and φ to become more coupled, thus
increasing the value of (2.26). This process is a kind of “feedback” loop between the
pendulum and wave equations for the FEL [14]. This loop causes exponential growth
initially, until saturation occurs. As the value of |a| increases, the evolution of the electrons
in phase space increases. Once the value increases sufficiently, ζ +φ→ 0, which causes the
electron energy to increase, therefore taking energy from the laser beam. This saturation
effect prevents the runaway of the exponential grow in gain.
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2.5 Pulse Lethargy and the Detuning Curve
Following the phase space evolution of the electrons through the undulator, as described
by (2.14), the electrons enter the undulator unbunched at τ = 0. As the electrons progress
through the undulator, they begin to bunch until they reach the end of the undulator, τ = 1,
where the electrons have bunched such that they significantly amplify the optical pulse.
Recall from the previous discussion on the resonance condition that the photons “slip"
ahead of the electrons by a distance of Nλ over the length of the undulator. This is referred
to as the slippage distance [12]. This slippage causes the electrons to amplify the trailing
end of the optical pulse, causing the centroid to move slower than c as shown in Figure 2.3.
This effect is called lethargy [13] and, over many passes, will cause the optical pulse to fall
behind the electron pulse and the amplitude to decay.

Figure 2.3: Depiction of pulse lethargy with the electron pulse in red and the optical pulse in
blue.

To counteract this lethargy effect, the spacing between the mirrors of the optical cavity
must be adjusted to shorten the optical cavity. This process is called desynchronization
and allows the photon pulse to be advanced after each pass [12]. If the cavity length is
shortened by moving one mirror a distance ∆S, then the amount of desynchronize can be
characterized by the dimensionless parameter

d =
−2∆S
Nλ

. (2.28)

The plot of the electron extraction η vs. d is called the detuning curve, where the extraction
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is the output optical power over the input electron beam power; Figure 2.4 gives an example
of one. From this example, there is clearly a peak that will provide the most output for
the laser, however this region can become unstable in the event of a slight change in the
mirror separation. Just beyond the peak is a region that provides much more stability with
relatively high output. At large values of d, the extraction goes to zero because the optical
pulse advances too far ahead of the electron pulse on each pass [12].

Figure 2.4: Example of a detuning curve.
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CHAPTER 3:
FEL Simulation Codes Overview

The modeling programs used here have been developed by professors J. Blau and W.B.
Colson at NPS [15]. All the programs use the dimensionless parameters as previously
described. The two-dimensional (2D) program follows the electron and optical pulses in
the longitudinal (z) direction in time (t) while the four-dimensional (4D) program follows
the pulses in the transverse (x,y) and longitudinal directions in time. The specific 4D model
used is for short pulses (optical pulse length comparable to the slippage distance Nλ ). In
the model, a fourth-order Runge-Kutta method is used to evaluate how the electrons evolve
in phase space according to the FEL pendulum equation (2.14). The optical field propagates
according to the FEL wave equation (2.24) using a Fourier transform.

Figure 3.1 is an example of the first portion of the graphical output from the 4D model. The
shades of blue represent a color scale with the darker blue indicating a lower value than the
lighter blue. The bottom row of plots is at the beginning of the first pass and the top row
is at the end of the last pass. The middle row of plots shows the evolution over n passes
through the undulator. The far left column of plots is labeled a(x,0,0) and represents a
cross-section of the optical field amplitude versus x where y = z = 0. The number in the
top right corner of each plot gives the peak value of |a|. The electron beam is shown in
red and the optical beam in blue. The next column of plots, labeled a(0,y,0), is nearly
identical, showing a cross-section of the field amplitude versus y for x = z = 0. The third
column of plots, labeled a(0,0,z), shows the electron pulse and optical field amplitude
versus the longitudinal direction z, at x = y = 0. Initially, the electron pulse (red) is slightly
ahead of the optical pulse (blue), but over the length of the undulator the electron pulse slips
behind the optical pulse by Nλ . The final column, labeled P(0,0,ν), shows the evolution
of the optical power spectrum at x = y = 0. The shift in the centroid of the optical spectrum
seen here illustrates the phenomenon through which the FEL selects the best wavelength at
which to operate, as it evolves from weak fields to saturation [14].
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***  FEL OSCILLATOR 4D PULSE SIMULATION  ***

j=67 mx=0.19 my=0.19 mex=0.38 mey=0.38 t`x=0.8 t`y=0.8 o`=0.5

mia=1.53 6yo=0 6eyo=0 N=30 D=0 b=0/ os=0 ow=0.5
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Thu Aug 21 14:47:56 2014 
nx=200, nz=101, nt=50, np=30000, Wp=8, seed=7, wbins=45, ebins=18
ao=10, ma=2.6, i0=0, bc=0, zbins=22

F=0.23, G=0.249, d=0.0103, 6a/a=0.0617, if=5.83

THEORY: G=2.06, d=0.0167

w0=0.616, w1=1.05, w2=1.18, THEORY: w0=0.671, w1=1.12, w2=1.12

M2=1.1, c2(0,0)=0.99

d0.08, Elapsed time=534.4 sec

Figure 3.1: First sample graphical output from 4D model.

The second set of plots is shown in Figure 3.2. The top left plot, labeled f (ν ,n), shows
the evolution of the electron phase velocity distribution. The plot next to that shows the
final distribution of electrons in phase space and indicates the bunching of the electrons.
The two plots in the upper right give a three-dimensional (3D) representation of the optical
wavefronts at the left mirror (τ = −0.1) and the right mirror (τ = 1.1). The bottom two
plots on the left show the evolution of optical power P(n) and gain G(n) and give their peak
values in the upper right. The next plot, labeled |c(m, p)|, indicates the modal composition
of the optical wavefront. The value of the Hermite-Gaussian coefficients based on the
cavity modes are represented by a blue square at each value of (m, p) using the previously
mentioned color scale. The last two plots give a 2D representation of the optical wavefront
at the left and right mirrors with the peak value indicated in the top right.
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***  FEL OSCILLATOR 4D PULSE SIMULATION  ***
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Figure 3.2: Second sample graphical output from 4D model.
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CHAPTER 4:
Design of High Power FELs

In 2013, the DE group at NPS published an article [16] discussing the design requirements
for an FEL to reach an average power of 1 MW. The DE group initially started with a
requirement for an optical wavelength λ ∼ 1 µm (chosen for atmospheric propagation).
Using a commercially available undulator with a period λ0 ∼ 3 cm and an undulator pa-
rameter K ∼ 1 provides the required wavelength with an electron beam energy Eb ∼ 100
MeV (determined using (2.3)). A superconducting, RF (SRF) linac can accelerate elec-
trons with an accelerating gradient of ∼ 10 MeV/m which gives an accelerator length of
∼10 m. FELs have a typical extraction η ∼ 2%, which means that the required average
electron beam power is Pb ∼ 50 MW. Combining that with the electron beam energy gives
a required average current Iavg ∼ 0.5 A; this can be achieved with a bunch charge qb ∼ 1
nC at a pulse repetition frequency of 500 MHz. To achieve good gain, the peak current
needs to be Ipk = qb/tb ∼ 1 kA, which gives a bunch length tb ∼ 1 ps. For an oscillator,
the extraction is approximately η ∼ 1/2N, which requires N ∼ 25 to achieve an extraction
η ∼ 2%, producing an undulator that is ∼ 0.75 m long. Most of the design parameters
discussed here have been achieved in laboratory FELs, but not all at the same time in a
single FEL. For example, a few electron guns have produced nC bunch charges, but not at
the high repetition rate listed here, so their average current is much less than the goal of
∼ 0.5 A. This is an important area of research to achieve a high-power FEL.

Previous work at NPS [17] analyzes the robustness of both an oscillator and amplifier FEL
by varying emittance (εx,y), energy spread (∆γ/γ), mirror shift (∆ym), and mirror tilt (∆θm).
The Jefferson Laboratory 14 kW FEL was also analyzed for comparison. This thesis work
focuses on the oscillator FEL and builds upon the previous work at NPS. Normalized emit-
tance is defined as the phase space area of the electron bunch given by εx,y = γ∆rx,y∆θx,y

where ∆rx,y is the rms transverse position spread of the electron bunch and ∆θx,y is the
rms angular spread of the electron bunch, as shown in Figure 4.1 [18]. The energy spread
refers to the spread in energies of the individual electrons in the electron bunch. A typical
accelerator produces an energy spread ∆γ/γ ∼ 0.1%→ 1%.
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The mirror shift and tilt refer to misalignments of the outcoupling mirror, which could
be due to platform vibrations for a ship-based FEL. The shift is simulated by moving the
mirror up (shifting the center of the optical beam from the middle of the mirror toward the
bottom) and the tilt is simulated by rotating the mirror about the center point, which can
be seen in Figures 4.2 and 4.3, respectively. The mirror shift is given in µm and the tilt is
given in µrad. The mirror shift and tilt could be limited to these magnitudes using active
alignment.

Figure 4.1: Emittance is defined by the area of the electron bunch in phase space, particle angle
(x’) versus particle position (x), from [18]

Figure 4.2: Mirror Shift (∆ym)
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Figure 4.3: Mirror Tilt (∆θm)
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CHAPTER 5:
Results

5.1 Jefferson Laboratory FEL

The Jefferson Laboratory 14 kW FEL was modeled using both the 2D and 4D programs and
the specific parameters shown in Table 5.1. This FEL was chosen to be modeled because
the DE group at NPS has previously worked with the team at Jefferson Laboratory and
has done numerous models of the 14 kW FEL, with the exception of using the recently
developed 4D program. Many experimental results for this FEL have been measured and
published; however, a desynchronism curve was never established. This does not allow a
comparison of the modeling results with the experimental results. However, an examination
of the modeling results does provide an opportunity to visit an issue discovered by Benson
in 1985, when he showed that the width of the desynchronism curve using a computer
model was twice the length of the experimental desynchronize curve [19].

Figure 5.1 shows the desynchronism curve for the Jefferson Laboratory 14 kW FEL using
both the 2D and 4D programs. The 2D results are in blue and the 4D results are in red.
The experiment achieved a peak extraction of η ≈ 1.4% which compares well with both of
the curves, but the 2D curve is approximately half the width of the 4D curve. This mirrors
the issue described by Benson where the 4D curve presumably represents the experimental
data. Closer examination of the 4D curve shows that the optical wavefront at the point of
peak extraction (d = 0.02) is 96% in the fundamental cavity mode. Figure 5.2 shows the
electron pulse (in red) and the optical field amplitude (in blue) versus z at x = y = 0 and
the 2D representation of the optical wavefront at the right mirror at a larger desynchronism
d = 0.02. An examination of the optical wavefront at d = 0.2 shows that it is now only
66% in the fundamental mode, as shown in Figure 5.3.
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Electron Beam:
Energy Eb = 115 MeV
Bunch Charge q = 0.114 nC
Bunch Length (FWHM) tb = 0.4 ps
Peak Current Ipeak = 285 A
Normalized Transverse Emittance (rms) εx,y = 8 µm
Energy Spread (rms) ∆γ/γ = 0.4%
Undulator:
Period λ = 5.5 cm
Length L = 1.65 m
Undulator Parameter K = 1.36
Optical Cavity:
Wavelength λ = 1.6 µm
Cavity Length S = 32 m
Rayleigh Length Z0 = 75 cm
Quality Factor Qn = 5
Mirror Radius Rmir = 3.8 cm

Table 5.1: Jefferson Laboratory FEL Oscillator Parameters, from [17]

Figure 5.1: Modeled desynchronism curve (extraction η versus dimensionless desynchronism
value d) for Jefferson Laboratory 14 kW FEL using the NPS 2D model (blue) and the new 4D
model (red)
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Figure 5.2: Optical wavefront depiction for d = 0.02. Top: optical amplitude |a| versus z at
x = y = 0. Bottom: optical amplitude |a| versus (x,y) at z = 0

Figure 5.3: Optical wavefront depiction for d = 0.2. Top: optical amplitude |a| versus z at
x = y = 0. Bottom: optical amplitude |a| versus (x,y) at z = 0
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The 2D program assumes that the optical wavefront stays in the fundamental mode, which
leads to the initial conclusion that the difference between the curves is due to the change
in optical wavefront mode. Various things can change the mode of an optical wavefront in
a cavity, including mirror imperfections and mirror clipping. Additionally, gain distortion
can cause the mode to change [14]. The 2D and 4D model runs assumed zero mirror imper-
fections. Also, the mirror radius used for the modeling was sufficient to prevent significant
clipping from occurring. One difference between the 2D and 4D models is that the 2D
model assumes that the optical wavefront stays in the fundamental mode and the 4D model
allows the optical wavefront to operate in higher-order modes. This leads to the hypothe-
sis that the mode of the optical wavefront plays a role in the width of the desynchronism
curve. To verify this conclusion the desynchronism curve was generated again, except the
4D parameters were adjusted so that the simulated optical cavity prevented the higher order
modes from experiencing significant gain.

Figure 5.4 shows the new desynchronism curve where the 2D and 4D curves are now 
aligned. Investigating the optical wavefront at d = 0.02 and d = 0.2 shows that the op-
tical wavefront now stays in the fundamental mode (99% and 97%, respectively), shown 
in Figures 5.5 and 5.6. These results support the conclusion that the change in mode 
causes the model desynchronism curve to be twice as long as a curve where the optical 
wavefront stays in the fundamental mode.
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Figure 5.4: Adjusted desynchronism curve for Jefferson Laboratory 14 kW FEL. For the 4D
model (red), the cavity mirrors are now positioned just outside the undulatory, forcing the optical
wavefront to remain primarily in the fundamental mode
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Figure 5.5: Adjusted optical wavefront depiction for d = 0.02. Top: optical amplitude |a| versus
z at x = y = 0. Bottom: optical amplitude |a| versus (x,y) at z = 0

Figure 5.6: Adjusted optical wavefront depiction for d = 0.2. Top: optical amplitude |a| versus
z at x = y = 0. Bottom: optical amplitude |a| versus (x,y) at z = 0
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Electron Beam:
Energy Eb = 44.3 MeV
Bunch Charge q = 5 pC
Bunch Length (FWHM) tb = 2.9 ps
Peak Current Ipeak = 1.85 A
Normalized Transverse Emittance (rms) εx,y = 8.8 µm
Energy Spread (rms) ∆γ/γ = 0.1%
Undulator:
Period λ = 3.3 cm
Length L = 4.95 m
Undulator Parameter K = 0.709
Optical Cavity:
Wavelength λ = 3.3 µm
Cavity Length S = 12.68 m
Rayleigh Length Z0 = 271.2 cm
Quality Factor Qn = 66.7
Mirror Radius Rmir = 2 cm

Table 5.2: Stanford FEL Oscillator Parameters, from [19]

5.2 Stanford FEL

The Stanford FEL was chosen to be modeled with the 2D and 4D programs since it was
the FEL that Benson used in his research where he discovered the discrepancies between
experimental data and modeling results, as previously discussed. The parameters used are
shown in Table 5.2. Figure 5.7 shows the desynchronism curve with the 2D program in blue
and the 4D program in red and Figure 5.8 shows the experimental desynchronism curve.
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Figure 5.7: Modeled desynchronism curve for Stanford FEL
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Figure 5.8: Experimental desynchronism curve for Stanford FEL, from [19]

As can be seen in Figure 5.7, the 2D and 4D programs match and give an approximate
width of d = 0.09 for the desynchronism curve. Analysis of the optical wavefronts, as seen
in Figures 5.9 and 5.10, shows that it stays primarily in the fundamental mode from d =

0.0004 (100% in the fundamental mode) to d = 0.06 (99% in the fundamental mode). This
is further verification of the conclusion made in the last section regarding diffraction and
the correlation between the optical mode and the width of the desynchronism curve. The
width of the experimental desynchronism curve in Figure 5.8 corresponds to dimensionless
desynchronism d ∼ 0.06, according to (2.28). This width is shorter than the width of
the modeled desynchronism curve; however, it is on the order of half the width of the
modeled curve reported by Benson [19]. The discrepancy between the experimental curve
and the NPS modeled curve may be due to the fact that the parameters of the electron
beam were slightly different than that reported by Benson; it may also indicate, based upon
the analysis of the previous section, that the Stanford experiment had higher order optical
content present in significant amounts. However, the NPS code does come significantly
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closer than previous modeling in predicting the width of the desynchronism curve.

Figure 5.9: Optical wavefront depiction for d = 0.004

Figure 5.10: Optical wavefront depiction for d = 0.06
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5.3 Emittance Versus Energy Spread
To better understand the robustness of the design of a notional higher power FEL oscillator,
modeling was used to estimate the tolerances of the emittance and energy spread of the
electron beam while still maintaining a decent value of extraction. The parameters of the
notional oscillator is shown in Table 5.3.

Figure 5.11 shows a 3D graph of extraction (η) versus transverse emittance (εx,y) and en-
ergy spread (∆γ/γ). The peak extraction achieved is 2.7%; however, as seen in Figure 5.11,
this value is only achievable at an emittance of 5µm and an energy spread of 0% – 0.4%.
Once either is above these respective levels, the extraction has a significant drop off and
then a more general, and predictable, downward trend.

Figure 5.11: Extraction (η) for emittance (εx,y) versus energy spread (∆γ/γ) for a generic oscil-
lator

Focusing on the sharp jump in extraction shows some interesting behavior with regard to
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Electron Beam:
Energy Eb = 120 MeV
Bunch Charge q = 1 nC
Bunch Length (FWHM) tb = 2 ps
Peak Current Ipeak = 500 A
Undulator:
Period λ = 3 cm
Length L = 0.75 m
Undulator Parameter K = 1.8
Optical Cavity:
Wavelength λ = 1.1µm
Cavity Length S = 20 m
Rayleigh Length Z0 = 7.5 cm
Quality Factor Qn = 4
Mirror Radius Rmir = 8 cm

Table 5.3: Generic FEL Oscillator parameters, from [17]

the optical wavefront. Figures 5.12 and 5.13 show the transverse profile of the electron
pulse and optical field amplitude in the x direction at the beginning of the undulator and
the evolution of the optical power spectrum at the pulse center for εx,y = 10 µm and 5 µm,
respectively, with ∆γ/γ = 0% in both cases. Examining Figure 5.12 shows that the FEL
reaches steady state with an extraction of 1.7%. The optical wavefront is a Gaussian. When
the emittance is changed to 5µm, the FEL finds a new mode of operation before it reaches
steady state. Comparing Figures 5.12 and 5.13 shows this new transverse mode. The optical
field amplitude profile has developed a double peak and the optical power spectrum shifts
to the new mode prior to reaching steady state. This new mode dramatically increases the
extraction (now 2.7%). This new mode of operation is not seen past an energy spread of
0.4% and an emittance of 5µm which suggests that if the emittance and energy spread of the
electron beam can be maintained below these limits, then extraction will see a significant
increase. While these results suggest a behavior, experiments are required to verify the
modeling results and determine the implications of the new operating mode.

One explanation for the increase in extraction is that for the lower emittance, the electron
pulse has a higher peak current at the center, which can be seen when comparing Figures
5.12 and 5.13. This higher peak current will increase the gain of the optical pulse on
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axis, which introduces mode distortion by placing optical power into higher order gaussian
modes. This allows the cavity to store additional power in higher order modes rather than
the fundamental, while reducing the on axis optical intensity along the undulator, perhaps
delaying the onset of saturation. While the behavior provides an extra percent of extraction,
it results in worse beam quality. When designing an FEL, that will need to taken into
consideration.

Figure 5.12: Optical field amplitude and optical power spectrum for εx,y = 10µm and ∆γ/γ = 0%
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Figure 5.13: Optical field amplitude and optical power spectrum for εx,y = 5µm and ∆γ/γ = 0%

5.4 Mirror Shift and Tilt
To better understand the design requirements for a FEL that will experience shipboard
conditions, modeling was used to determine the effects of adjusting the mirror shift (∆ym)
and mirror tilt (∆θm) on extraction. Previous work at NPS has shown that an FEL will
be subjected to large scale but low frequency vibrations (due to waves and sea state) and
smaller, higher frequency vibrations (due to onboard machinery) [20]. The larger vibrations
can be accounted for using active damping that is commercially available. The smaller, high
frequency vibrations are more difficult to mitigate actively and can become a problem. The
parameters in Table 5.3 were used with an emittance of 10µm and an energy spread of
0.2%. The peak extraction is 1.7% and the results, as seen in Figure 5.13, show that at least
half of that extraction can be achieved for ∆ym ≤ 30µm and ∆θm ≤ 2µrad. It is believed by
experimentalists that the vibrations that are experienced during shipboard conditions can
be actively damped down to support the mirror shifts and tilts to maintain half of the peak
extraction for the modeled FEL.
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Figure 5.14: Extraction (η) for mirror shift (∆ym) versus mirror tilt (∆θm) for a generic oscillator
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CHAPTER 6:
Conclusion

Analysis of desynchronism curves using the 2D and 4D models shows that the model curves
are longer than experimental curves when the optical wavefront stays in the fundamental
mode. There exist a few possibilities as to the cause of this: the combined effects of
diffraction and gain distortion, the basis set for the optical modes, and the relative lengths
of the gain medium and the optical cavity. In order to better understand this issue, more
modeling runs would be required as well as experiments that simultaneously measure the
desynchronism curve and the modal composition.

The 4D simulation results used to determine the robustness of a FEL design showed that
there exists a new transverse mode that develops for a normalized emittance εx,y = 5 µm
and energy spread ∆γ/γ ≤ 0.4%. Future work should involve the determination of how
this new mode develops as well as experimental verification. If this new mode is observed
experimentally, then it could enable a significant increase in the extraction and will help
focus the efforts of FEL design to achieve the required electron beam parameters.

Simulation results also show that at least half of the maximum extraction can be achieved
with a mirror shift ∆ym ≤ 30µm and mirror tilt ∆θm ≤ 2µrad. These results show the
robustness of the FEL design with regard to mirror alignment. Further work should focus
on expected misalignments due to vibrations in a realistic shipboard environment. Once
that is determined, active mirror alignment systems should be examined to improve FEL
performance.

Modeling continues to provide valuable insight into the design of FELs as well as the
dynamic physics of FEL operation. Continued modeling will be required to further advance
FEL technology and understanding in order to achieve high powers for operational use.
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